Análisis bibliométrico - patentométrico sobre alternativas científico-tecnológicas para el tratamiento de aguas y residuales industriales utilizando zeolitas naturales y/o modificadas

Contenido principal del artículo

Sergio Daikel González García
Ismari Salgado Machín

Resumen

El presente trabajo tiene como objetivo analizar la producción científico -tecnológica para el tratamiento de aguas y residuales industriales utilizando zeolitas naturales y/o modificadas”, mediante estudios bibliométricos y patentométricos. La investigación requirió el uso de diferentes métodos teóricos cómo el analítico-sintético,  el inductivo-deductivo, y el método empírico para el análisis clásico documental. Los resultados mostraron que son relevantes los avances científicos en la utilización de zeolita natural modificada para las remociones de metales pesados y amonio. Se concluye que la producción científica y tecnológica en este tema, han tenido avances importantes en el periodo estudiado en cuestión (2010-2020).

Detalles del artículo

Cómo citar
González García, S. D. . y Salgado Machín, I. . (2024) «Análisis bibliométrico - patentométrico sobre alternativas científico-tecnológicas para el tratamiento de aguas y residuales industriales utilizando zeolitas naturales y/o modificadas», INFOMIN, 16, p. https://cu-id.com/2144/v16e03. Disponible en: http://www.infomin.co.cu/index.php/i/article/view/531 (Accedido: 30 noviembre 2025).
Sección
Artículos Originales

Citas

Acevedo, D., Builes, S., Ordóñez, C. & López, I. 2011. Evaluación de la eficiencia de una batería de filtros empacados en zeolita en la remoción de metales pesados presentes en un licor mixto bajo condiciones de laboratorio. Revista Ingenierías Universidad de Medellín, 10(18), 31-42.

Can, Ö., Balköse, D., & Ülkü, S. 2010. Batch and column studies on heavy metal removal using a local zeolitic tuff. Desalination, 259(1-3), 17–21. doi:10.1016/j.desal.2010.04.047

Carreño, U.F. 2015. Tratamientos de aguas industriales con metales pesados a través de zeolitas y sistemas de biorremediación. Revisión del estado de la cuestión. Revista Ingeniería, Investigación y Desarrollo, 15(1), 70-78.

Ciosek A.L., Luk G.K. 2017. Kinetic Modelling of the Removal of Multiple Heavy Metallic Ions from Mine Waste by Natural Zeolite Sorption. Water, 9(7), 482. doi:10.3390/w9070482

Chiang, Y. W., Ghyselbrecht, K., Santos, R. M., Martens, J. A., Swennen, R., Cappuyns, V., & Meesschaert, B. 2012. Adsorption of multi-heavy metals onto water treatment residuals: Sorption capacities and applications. Chemical Engineering Journal, 200-202, 405–415. doi:10.1016/j.cej.2012.06.070

Choi, H.-J., Yu, S.-W., & Kim, K. H. 2016. Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. Journal of the Taiwan Institute of Chemical Engineers, 63, 482–489. doi:10.1016/j.jtice.2016.03.005

Delkash, M., Ebrazi Bakhshayesh, B., & Kazemian, H. 2015. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224–241. doi:10.1016/j.micromeso.2015.04.

Du, G. 2012, Retention and transport throughFe (III)-coated natural zeolite. J. Hazard. Mater. Journal of Hazardous Materials. 221–222, 118–123.

Guocheng, L., Li, Z., Wei-Teh, J., Ackley, C. & Fenske, N. 2014. Demarco removal of Cr (VI) from water using Fe (II)-modified natural zeolite. Chem. Eng. Chemical Engineering Researchand Design, 92(2), 384–390. doi: 10.1016/j.cherd.2013.08.003

Jovanovic, B., Vukasinovic-Pesic, V., Veljovic, D., & Rajakovic, L. 2011. Arsenic removal from water using low-cost adsorbents: A comparative study. Journal of the Serbian Chemical Society, 76(10), 1437–1452. doi:10.2298/jsc101029122j

Kim, D.-G., Nhung, T. T., & Ko, S.-O. 2016. Enhanced adsorption of heavy metals with biogenic manganese oxide immobilized on zeolite. KSCE Journal of Civil Engineering, 20(6), 2189–2196. doi:10.1007/s12205-016-0356-1

Magriotis, Z., Paulo, V. & Leal, A. 2014. Treatmentthrough zeolites etheramines. Applied Clay Science 91–92, 55–62.

Malamis, S., & Katsou, E. 2013. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252-253, 428–461. doi:10.1016/j.jhazmat.2013.03.024

Margeta, K., Zabukovec, N., Siljeg, M., & Farkas, A. 2013. Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. doi:10.5772/50738

Ríos, A., Vargas, F. & Cuchimaque, L. 2013. Remoción de Fe y Mn en aguas naturales por adsorción-oxidación sobre clinoptilolita. Rev. Fac. Ing. Univ. Antioquia, (66), 24-44.

Shi, J., Yang, Z., Dai, H., Lu, X., Peng, L., Tan, X., Fahim, R. 2018. Preparation and application of modified zeolites as adsorbents in wastewater treatment. Water Science and Technology, wst2018249. doi:10.2166/wst.2018.249

Wang, S., & Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24. doi:10.1016/j.cej.2009.10.029

Wen, J., Dong, H., & Zeng, G. 2018. Application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities. Journal of Cleaner Production, 197, 1435–1446. doi:10.1016/j.jclepro.2018.06.270.